
Motivation

Companies should conduct log management and log analysis at

regular intervals. [KS06] Log management software transform

logs from plain text into filterable and searchable data as well

as store them for the long-term.

Requirements

This thesis analyses two such groups of open-source software,

which are the Elastic Stack and the Grafana Stack. Each stack

consists of a log aggregator, a search engine doubling as a

data store, and a browser interface. The performance of the

stacks are compared in 4 aspects: resource usage, query

performance, support for a variety of integrations and

possibilities for further parsing of logs through the browser

interfaces.

Implementation

The components of each stack were executed as Docker

containers configured to parse logs to make them searchable

and filterable. Three different sets of logs were ingested:

JSON-, Apache-, and PostgreSQL-format logs.

Query Performance

The performance of the search engines was tested by running

queries through their browser interfaces. Two queries varying

in timeframe and/or keywords were modelled for each dataset.

The queries were then executed 10 times each on the search

engines of each stack (Elasticsearch and Loki).

A Comparison of the Elastic Stack and Grafana Stack
as Tools for Analysing Log Data
Gaik Teng Ooi

Bachelor Thesis • Applied Computer Science Program • Department of Informatics and Media • 24.03.2023

Resource Usage and Ingestion Time

During ingestion, resource usage (CPU and memory) and time

taken were measured with the command docker stats. The

Elastic stack shows a higher resource usage than Grafana

across all datasets. The Elastic stack ingested JSON logs much

faster than the Grafana stack but was slightly slower for

PostgreSQL logs. Both stacks had the highest resource usage

while ingesting PostgreSQL logs. Apache logs were

continuously live-streamed so ingestion time was not

measured.

Integration Support

Support for three areas were inspected by reading the

documentation: client plugins, database plugins and data

formats or protocols. The stacks showed an equal amount of

resources and support for integrations, or plugins. Both

products have active open-source communities who contribute

to the development of these plugins.

Post-Parsing

While the Elastic stack has index templates that can be

modified continually to ingest new logs saved as indices, the

Grafana stack “dynamically” parses logs efficiently while saving

time and space that reloading indices normally require.

Results

The Elastic stack has a higher resource usage overall while

ingesting logs. PostgreSQL logs led to the highest resource

usage for both stacks. Grafana slightly outperforms in queries.

Both are matched in support for integrations offered.

Grafana's post-parsing approach is more “dynamic” because

saved logs are parsable with LogQL queries, while Elastic

stack's approach is more “static”, needing to reindex logs if a

new mapping needs to be defined.

Conclusion

This thesis concludes that each stack is better for different

contexts. The Elastic stack is suited for the long-term storage

of archival logs and the Grafana stack for real-time log

aggregation and monitoring.

Sources

[KS06] Kent, K. ; Souppaya, M.: Guide to computer security log

management. (NIST SP 800-92; 0 ed., p. NIST SP 800-92). National

Institute of Standards and Technology, 2006.

Supervised by Dipl.-Inform. Ingo Boersch and Prof. Dr.-Ing. Jochen Heinsohn • Technische Hochschule Brandenburg • Harald Meiß • forsa GmbH

Fig. 1: Deployment of docker containers and network with datasets

Fig. 2: Graphs of CPU usage in percentage [Left] and memory usage in
Mebibytes [Right] during the ingestion of a live stream of Apache logs.


	Slide 1

